
Development of Simulator for Operating System Processes

Louigi M. Arayata1, Maria Carmela F. Francisco2*

and Ma. Ian P. Delos Trinos2

1Department of Information Technology, Cavite State University - Cavite City Campus
2*College of Science, Technological University of the Philippines, Manila

2College of Industrial Technology, Technological University of the Philippines, Manila

ABSTRACT

The study sought to develop a supplementary learning tool that intends to provide an
innovative way of understanding the context of a uniprocessor type of operating system.
Its core modules have the functionality to introduce the concepts of the operating system’s
boot process, process state, and interrupts through animated information graphics while
the concepts of CPU scheduling schemes, memory management algorithms, and banker’s
algorithm are presented through simulation. The software tool was designed to run in a
stand-alone computer system. The software development methodology involved
prototyping which implementation required Visual Basic.Net programming language using
Visual Studio Integrated Development Environment (IDE), Camtasia Studio and Camtasia
Recorder for animation rendering, Adobe systems for graphics enhancement and SQLyog
for the database management system. The application was subjected to different tests to
ensure its functionality and accuracy. Further, it was evaluated based on the ISO 25010
quality factors such as functional suitability, reliability, portability, usability, performance
efficiency, security, compatibility, and maintainability. It obtained an overall mean of 4.83
equivalent to a descriptive rating of excellent, which implies that the project attained its
primary purpose to provide an innovative tool in understanding and learning the context of
operating system.

Keywords: Learning Aid , Operating System, OS Simulator, Simulator

INTRODUCTION

An operating system (OS) is a system software
and framework that oversees resources present
on a computer system, thus administers the
functions of a computer. OS can be considered
as a vital software in a computer system that
serves as an intermediary between the computer
software and hardware. This serves as the focal
point of all the activities and processes inside a
computer system (Naghibzadeh, 2011) and as
the machine’s interface between the user and
hardware (Tutorials Point, 2016). It manages
computer resources through Central Processing
Unit (CPU) allocation schemes, memory
management, and other computer processes on
the background. This context has made the OS
to continuously progress but its foundation for
resource management is firmly defined to one of
the major subjects for computer-related courses.

Operating System as a course provides
introduction to concepts, theories, system
components, and computation for scheduling

algorithms, process management and other
computer resource management paradigms.
Further, the Commission on Higher Education
(CHED) Memorandum Order No. 25, Series of
2015 prescribes a curriculum map parallel to the
subjects being offered to Information Technology
and Computer Science – related courses so
students can have an additional understanding
on how the OS performs computations and other
functions in the background (CHED, 2015).

The course is complex in nature for it deals with
core concepts of OS like processes and threads,
scheduling, memory management, and file
systems, input and output device management.
It also requires understanding in mathematics,
logic and programming which makes it difficult for
most students to deal with Operating System as
a course. The topics being cited are taught by
the instructor through board work and lecture-
based instructions. Due to the complexity of the
subject, teaching the algorithms implementation
and solving it manually could be very hard for
both instructor and students. One of the solutions

14 January - June 2022

for this dilemma is the implementation of an
application with an integration of simulation as a
classroom teaching tool. Different subject areas
are being incorporated with this technology to aid
teachers in delivering effective teaching.

Developing a simulator for OS algorithms in
resource management could help educators
improve teaching instrument, making the
students adopt and learn the subject easier.
Nowadays, modern methodologies in the field of
education have been continuously on track to
provide betterment to students and to aid the
educators. Digital tools, like simulators in
particular, have been incorporated to enhance
the teaching strategies of modern educators in a
classroom setup. There are existing software
applications which provide simulation for
operating system’s scheduling algorithms. As
such, developed simulator like OS Sim simulator
has the capability to present the context and
ideas behind OS process scheduling algorithm
and memory management and disk scheduling
(Macia, 2015). Likewise, a CPU scheduling
simulator embedded with preemptive and non-
preemptive CPU scheduling (Pinoy Computer
Engineer, 2017), and simulator program for page
replacement algorithm (Solanki, 2015). However,
the cited simulator programs only deliver
individual types of scheduling algorithm and static
system interfacing. In addition, these simulators
do not offer a comparative analysis on the
performance of an algorithm. Existing software
tools do not include functions to simulate memory
allocation algorithms, memory swapping, and
deadlock simulation using banker’s algorithm for
single and multiple resources, which make these
simulators inadequate. Also, some concepts of
operating system can be more precisely
described through the use of animation, which
existing simulator models lacked.

The development of the application focusing on
the creation of a simulation software for OS
context and other computer resource
management can stimulate appreciation on the
subject. This sought to effectively learn and
teach OS subject. The study can be beneficial
and constructive for both teachers and students

since it can provide an innovative way for
studying and understanding the context of OS
that could lead to stimulating, exciting and
interactive classroom discussions.

OBJECTIVES

In general, this research project sought to
develop a Simulator for Operating System
Processes that will serve as a supplementary
learning aide for teaching and studying operating
system processes.

Specifically, it was undertaken to:

1. Design a software tool with the following
features:

a. Animated representation of the following:

a.1. Boot process;

a.2. Process state diagram; and

a.3. Interrupts

b. Simulator function for:

b.1. CPU scheduling algorithms for
preemptive, non-preemptive algorithms,
and multilevel queue;

b.2. Memory management that includes
page replacement algorithms, memory
allocation algorithms and memory
swapping; and

b.3. Deadlock through Banker’s algorithm

c. Comparative analysis for CPU scheduling
algorithms

d. Comparative analysis for page
replacement algorithms

2. Create the software using Visual Basic.Net as
programming language through Visual Studio
Integrated Development Environment,
Camtasia Studio and Camtasia Recorder for
animation rendering, Adobe systems for
graphics enhancement and SQLyog as the
database management system;

L. M. Arayata, MC. F. Francisco and MI. P. delos Trinos

15 CvSU Research Journal

3. Test and improve the software tool in terms of
functionality and accuracy; and

4. Evaluate the performance of the software tool
according to the criteria of ISO 25010 for
quality software.

Theoretical Framework

E-Learning, a future tool for globalization.
Electronic learning (E-Learning) is an innovative
tool that facilitates learning through the provision
of interactive courses and methods of teaching
stated that since technology continues to
develop, e-learning is becoming more available
to any platform. This gives opportunities in a vast
multimedia training paradigm (Laskaris, 2014).

The creation of a software tool that will serve as
a supplementary resource for learning the
concepts of operating system is the consideration
for development of an e-learning software tool.
More so, the said tool is embedded with different
functions that present and simulate the major
topics of the subject.

Computer-aided instruction. A Computer –
Aided Instruction (CAI) is a tool that utilizes a
computer system as the tool assist the learners
with their learning topics. On the part of the
lecturer, the said tool can improve the teaching
styles and methodologies. CAI learning material
was embedded with tutorials, simulation, and
problem-solving approaches to introduce lessons
to improve students’ knowledge (Mann, 2009).

The development of a computer-aided instruction
sought to provide an innovative tool that will
provide learners and teachers a software that
can be used for discoursing operating system
course subject. Through the use of the software
tool, the teachers can have different sets of
examples dealing with the implementation of the
algorithms that the OS system uses.

Animation. Objects that are said to be
metaphorically spatio-visual can most likely be
best portrayed through graphics. As such, the

use of moving graphics conveyed with the
content and format of the concepts of something
that a person wants to learn and understand
tends to facilitate and improve comprehension,
learning, retention, and inference (Tversky,
Morrison, & Betrancourt, 2002).

Likewise, an animated instruction must be
properly organized and integrated with
thematically relevant information, incorporating
knowledge structures for learners. Moreover, it
involved a dynamic characteristic involving
visuospatial, audio and graphics. This, in turn,
promotes fundamental advantage of animations
over still images as part of learning process
enhancement (Lowe, 2003).

The implementation of animation to the software
tool involves animated graphics. This conveys
more information and promotes interactivity,
making it more effective than static graphics in
terms of representing sophisticated systems.

Operating System. An Operating System (OS)
is a system software comprised of complex
instructions to computer hardware. This forms
layer of programming code in which computer
functions and processes are built. Further, the
system serves as an intermediary between
hardware and software. OS is also described as
the most vital part of computer system for it deals
with all the assets and resources. This includes
computer hardware such as memory, Central
Processing Unit (CPU), and storage capacity and
software applications. OS is developed by
programmers in lieu to balance the differing
needs of end users and system resources that
contend for priority, CPU processing, and system
services and applications running on the
background (McHoes & Ballew, 2011).

The same idea was formulated by the
researcher. The context of simulating the CPU
scheduling algorithms focuses on computing the
output averages in an automated manner. Also,
the comparison between the algorithms can be
done through running multiple CPU scheduling
schemes simultaneously. This is to determine
and compare the performance efficiency of one
scheme to another.

Development of Simulator for Operating System Processes

16 January - June 2022

L. M. Arayata, MC. F. Francisco and MI. P. delos Trinos

OS Simulator. An OS Simulator is an
educational aid for studying operating system
concepts. Moreover, the purpose of OS Sim is to
present the context and ideas behind OS in a
graphical simulation, thus providing a tool for
computer science students learn the subject
[Macia].

The reference application includes simulation
modules for process scheduling algorithm and
memory management of the same functionalities
to the development of the software tool. In
addition, other OS topics such as boot process,
process state and interrupt, page replacement
algorithm, memory swapping and deadlock are
also integrated to increase the complexity to the
software tool, to which are the major topics that
are not part of the reference simulator.

Similarly, a CPU scheduling simulator embedded
with First Come First Serve, Shortest Remaining
First (Preemptive), Shortest Process First (Non-
preemptive), Round Robin, Priority (Preemptive)
and Priority (Non-preemptive). The application
also has the capability to generate random
datasets. The simulator computes for limited
outputs such as average waiting time (AWT) and
turnaround time (ATAT) [Pinoy computer engr].

Through this reference, the research project was
designed with a more complex computation
criteria such as averages for response time (RT),
waiting time (WT), turnaround time (TAT),
completion time (CT), and throughput (TP).
Simulation function for multilevel queue
scheduling is also added. More so, comparative
analysis for multiple CPU scheduling algorithms,
dataset management, printing of simulation data
and system variables management are
integrated to make the simulator more efficient.

Moreover, the simulator for page replacement
algorithm includes functions to simulate the
implementation logic of First In, First Out (FIFO),
Optimal and Least Recently Used (LRU)
algorithms. The simulator can accept manual
user input and can also generate a random
dataset. After the simulation, the application can
generate the complete page table, total number

of page hits, and page faults [Solanki].

The simulator became the basis for the design of
the page replacement algorithm module of the
overall system for the research project was
integrated with additional functions such as
simulating multiple page replacement algorithms
at the same time to determine the efficiency
ranking of the algorithms. Additional output
computations such as hit ratio and fault ratio are
also computed and can be printed. Further, the
dataset used in simulation can be saved. The
criteria for inputting necessary data can be
modified and adjusted through the integration of
system variables.

METHODS

The Simulator for Operating System Processes is
intended to help the educators teach the
fundamentals and context of Operating System
(OS). The design of application focused on the
inclusion of animated representation of the idea
behind boot process, process states and
interrupt. Simulation for OS process scheduling
algorithms, memory management algorithms,
memory allocation algorithms and memory
swapping are also integrated as part of the
design. The software tool design also included
the management of system variables and a help
module to provide an overview on system’s
usage and navigation. Figure 1 presents the
functional diagram for the module definition of the
Simulator for Operating System Processes.

Figure 1 shows the functional diagram of the
system which includes the main form and the
main modules as follows: (1) Boot Process, (2)
Process State, (3) Scheduling Algorithm, (4)
Memory Management, (5) Deadlock, and (6)
Interrupt Module and two (2) complementary
functions such (1) System Variables, and (2)
Help Function will be displayed.

The system requires necessary inputs for
simulator functions to execute. On CPU
Scheduling, arrival time, burst time, priority level

17 CvSU Research Journal

(for priority-based scheduling), time quantum (for
round robin scheduling), and priority queue (for
multilevel queue scheduling) are the inputs. On
memory management, inputs to simulate page
replacement algorithms are the reference string
and the number of page frames. Further, the
memory size, number of memory partitions, job
ID, job size and execution time are the inputs
needed to simulate the memory allocation

algorithms. On memory swapping, size of the
main and secondary memory are needed to
simulate the swapping process. Deadlock
simulation process, on the other hand requires
dataset containing the number of resources,
resource instance values, number of processes,
and process allocation and maximum values.

Development of Simulator for Operating System Processes

18 January - June 2022

Figure 1. Functional diagram of Simulator for Operating System Processes

All of the simulator functions are programmed in
a way that it can accept range of inputs based
from system variables, and thus the simulation
can be processed “step-by-step” or “skip all
steps” to show the final output such as Gantt
chart and computation table for CPU scheduling,
page replacement table for page replacement
algorithm, process logs for memory allocation

and memory swapping, and process safe
sequence, and state for deadlock simulation.
Further, the outputted simulation results of the
said processes can be printed, while the
animation-based modules such as Boot Process,
Process State and Interrupt, the topics are
presented through an animated information
graphics.

19 CvSU Research Journal

L. M. Arayata, MC. F. Francisco and MI. P. delos Trinos

Figure 2. Functional decomposition diagram of Simulator for Operating System Processes

Development of Simulator for Operating System Processes

In addition, the Functional Decomposition
Diagram was also used to design the system.
Figure 2 shows the hierarchy of the functional
decomposition diagram of the study. The process
starts on the module selection in the main form.
The Boot Process module presents an animation
with regards to stages and procedures of the
operating system’s booting process. The
Process State module provides an animated
graphical representation of process state
diagram. The CPU Scheduling Algorithm module
is integrated with functions to simulate the
implementation logic of preemptive, non-
preemptive and multilevel queue scheduling. The
preemptive scheduling includes the shortest
remaining time first (SRTF), priority, round robin
(RR), while non-preemptive algorithms consist of
shortest job first (SJF), first come first serve
(FCFS) and priority, and multilevel queue
scheduling. The cited CPU scheduling
algorithms are embedded with a simulator
function wherein the needed criteria for each
algorithm, such as number of processes, burst
time and arrival time should be inputted in order
for a specific schema to be executed. Further,
the simulation of the algorithms for preemptive
and non-preemptive scheduling includes
comparative analysis option to run and rank the
efficiency of selected algorithms based on the
inputted dataset. The output of the simulation
process includes waiting time, response time,
turnaround time, completion time, and throughput
will be computed and a process Gantt chart that
can be printed, in which the efficiency of the
algorithms can be ranked based upon the
dataset being used.

The Memory Management module contains three
submodules such as page replacement
algorithms, memory allocation algorithms, and
memory swapping. The page replacement
algorithm is integrated with simulator function to
simulate the implementation of the optimal page
replacement algorithm, first-in, first-out (FIFO)
page replacement algorithm, and least recently
used (LRU) page replacement algorithm. The
function can be executed by providing the
number of page frames and reference string
input data. The output of the simulation process

includes the page replacement table, the number
of page hits, and the number of page faults with
their averages that can be printed. This also has
a comparative analysis function to determine the
efficiency of each algorithm being used,
presented through chart that shows the hit and
fault percentages. Further, the memory
allocation algorithm involves the replication of the
processes for first fit algorithm, best fit algorithm
and worst fit algorithm. This simulator needs
specifications for memory size, partition data,
and job data to execute. It has a real-time
execution based on processes’ execution time,
and the simulator events are presented through
logs. Memory swapping, on the other hand,
includes a real-time simulation of the logical
implementation of swapping of a job data in and
out of the memory. The simulation process
requires specifications for main and secondary
memory sizes, job size, and CPU time. The
execution of process swapping is seen through
the event logs.

The Deadlock module was designed with the
implementation of banker’s algorithm with single
resource and multiple resources. The simulation
of the algorithms is done by providing the
specifications and dataset for the resources,
number of processes, allocation values, and
maximum values. The simulator then generates
a Gantt chart that contains the safe sequence
and the state of the algorithm.

The Interrupt module, on the other hand,
presents the context and ideas behind the
interrupt process. This is shown and played
through the integration of an animated
information graphics on the form.

Also, the software tool has system variables that
can be managed and updated. The variables are
the bases for the minimum and maximum values
for the user input and for the generation of
random dataset. Lastly, a help tool is integrated
for viewing the necessary topic data to aid the
user with regards to the system’s usage.

The simulator was designed and developed
through the implementation of prototyping
development methodology. Upon building the

20 January - June 2022

prototype, the design of the interface for each
module and function based on system
requirements and preparation of storyboard were
made. Then, pseudo coding and initial prototype
with core modules are defined. After the
development of the first prototype, the
functionalities of the simulator and
synchronization of the animations based on the
animation script and object transitions were
tested. After the said phase, validation of the
events performed during the functionality testing
against the standard requirements being set.
Also, design specifications and functionalities
were refined and improved whenever possible.
The researcher also consulted instructors of
Operating System course subject with the output
results generated by the prototype, and refined
the system coding whenever inconsistencies and
errors in computations are found.

Further, it was developed using Visual Basic.Net
as programming language through Visual Studio
Integrated Development Environment, Camtasia
Studio and Camtasia Recorder for animation
rendering, Adobe systems for graphics
enhancement and SQLyog as the database
management system to encapsulate default
examples for the simulation of the system’s
scope.

RESULTS AND DISCUSSION

The system underwent a series of tests to
guarantee the software quality in terms of
functionality and accuracy. Functionality test was
applied to evaluate the performance and
efficiency of the software tool in connection to its
requirements and specifications to assure that it
has met and satisfied the requirements set.
Table 1 discusses the percentage of all cases
executed, passed, failed and not executed, if
any.

Two cycles for testing the functionality of the
software tool were conducted. In Cycle 1, all the
test cases were executed. However, results
showed that only 84.36 percent of the test cases
passed the procedure, and 15.94 percent failed
to satisfy its expected functionality, implying that
the overall functionality of the system is not yet
fully achieved. After evaluating and validating the
results, the system was refined. Bugs and errors
were corrected, minor adjustments to the objects
were also done to make the application more
interactive and suitably functional.

After applying the resolutions and revisions, the
test cases which failed the test were executed
again in Cycle 2 to validate if all the issues were
resolved. Results showed that the eight test

21 CvSU Research Journal

L. M. Arayata, MC. F. Francisco and MI. P. delos Trinos

Table 1. Test case execution summary

Test Execution Expected Result

Actual Result

Cycle 1 Cycle 2

Test Cases Executed 100% 100 % 100 %

Results of Test Cases

 Passed 100% 84.36 % 100 %

 Failed 0% 15.94 % 0 %

Test Case Not Executed 0 0 % 0 %

cases passed all the tests when executed in
accordance with their functions. This implies
that the software tool’s functionality testing is
successful.

The system was evaluated by ten (10)
Information Technology instructors and 30
selected students taking computer-related
courses. The study used ISO 25010 as the
evaluation instrument. On the basis of the tests
and evaluation conducted on the software tool,
the project was found to be successfully
developed in accordance with the defined
requirements of the overall system functionality.

The functional suitability performance of the
software tool obtained an excellent rating with a

mean of 4.92, in which was the highest rating
based on the evaluation results. It denotes that
all functionalities were implemented based on
the specified requirements, to the degree that
the system produces correct and suitable
outputs.

Further, the application got a mean of 4.83 on
reliability with an equivalent qualitative
interpretation of excellent, implying that the
application is dependable under normal
conditions.

The Portability criterion, on the other hand,
obtained a weighted mean of 4.80 with a
qualitative interpretation of excellent, indicating
that the system can run and be supported on

22 January - June 2022

Development of Simulator for Operating System Processes

Table 2. Summary of evaluation results

Criteria Mean Qualitative Interpretation

Functional Suitability 4.92 Excellent

Reliability
4.83

Excellent

Portability 4.81 Excellent

Usability 4.86 Excellent

Performance Efficiency 4.78 Excellent

Security 4.67 Excellent

Compatibility 4.84 Excellent

Maintainability 4.90 Excellent

Grand Mean 4.83 Excellent

*Range of values: 4.20 – 5.00 = Excellent; 3.40 – 4.19 = Very Good; 2.60 – 3.39 = Good; 1.80 – 2.59 = Fair; 1.00 – 1.79
= Poor

23 CvSU Research Journal

L. M. Arayata, MC. F. Francisco and MI. P. delos Trinos

different platform versions and can be easily
installed.

More so, the usability criterion is marked as
excellent, with a weighted mean of 4.86. Result
showed that the software tool’s components can
be used by specified users to achieve defined
objectives with optimum effectiveness, efficiency,
and satisfaction in a suggested context of use.

The Performance efficiency criterion got a
computed mean of 4.78 that translates to
excellent verbal interpretation. This denotes that
the response time, processing time and
throughput rates of the system is kept to a
minimum.

Likewise, the criterion Security garnered a
weighted mean of 4.67. The result translates to
an excellent qualitative interpretation. This
implies that the application can ensure the data
are accessible only to the authorized system
users.

The Compatibility criterion, likewise, obtained a
weighted mean of 4.84, with an excellent
qualitative interpretation. It shows that the
software tool can perform its required function
efficiently, thus the application components are
integrated with one another without problems or
issues.

Lastly, the Maintainability criterion also got a high
mean rating of 4.90, parallel to its qualitative

interpretation of excellent. The result denotes
that the said criterion met the prescribed
standard software requirements, and
specifications to be maintainable and flexible
enough to cater the changing needs of the user.

On the basis of the tests and evaluation
conducted on the software tool, the study is
found to be successfully developed in
accordance to the defined requirements of the
overall system functionality. Results from
accuracy and functionality tests proved that the
system performs in conformance to its
specifications, thus gaining an average mean of
4.83 with a verbal interpretation of excellent.

Below are the sample screenshots from the
system, supporting that it successfully met all the
specified requirements and specifications.

Figure 3 exhibits the information graphics of the
Boot Process animation. An animated video
pertaining to the context of Operating System
Boot Process can be played in this window. It is
integrated with a media player that has controls
to play, pause, stop and adjust the playback
volume.

Figure 4 illustrates the CPU Scheduling
Algorithm Window. This contains the scheduling
type selection for Preemptive, Non-preemptive,
Multilevel Queue and the option to simulate a
comparative analysis among algorithms. The
window also has a table for inputting necessary

Figure 3. Boot Process Figure 4. CPU Scheduling Algorith

24 January - June 2022

Development of Simulator for Operating System Processes

dataset. Buttons for removing of an inputted
process, generating a random dataset, resetting
the simulation process, printing of the simulation
outputs, saving the dataset, and loading the
saved datasets are also integrated in the
interface. Moreover, the window contains
functions to simulate the algorithm in step by
step procedure to skip all steps, and are
presented through Gantt chart and in populated
data table.

Figure 5 denotes the graphical representation of
the comparative analysis for multiple CPU
Scheduling algorithms with the same dataset.
The ranking for the efficiency of selected
algorithms through chart and tables are also
displayed on the said form. The window also
includes the functionality to print the efficiency
ranking.

CONCLUSIONS

The software tool was developed to provide a
supplementary learning tool that will aid the user
in understanding or learning the course topics in
a more innovative method. The software tool is
comprised of modules to present the context of
boot process, process state, and interrupt
through animated information graphics. It also
includes the simulation of the different processes

performed by the operating system in resource
management such as CPU scheduling schema,
algorithms implied on memory management, and
Banker’s algorithm for single and multiple
resources. In addition to its simulator function,
the system has the capability to run multiple
algorithms at the same time for comparative
performance analysis. The software tool can
support runtime on Windows 10 operating
system.

 Throughout the development cycle, the
specified methodologies and procedures were
considered and followed. The logical design of
the software tool, in particular to the input-
process-output model, was conceptualized
through the use of functional diagrams. The
functional decomposition diagram was further
used to define and organize the system’s
components and modules. Pertaining to the
simulator’s physical design, storyboarding for
each window was effective in visualizing the
graphical user interface design. Further, the
software tool was primarily developed through
the framework of a prototyping model where its
iterative approach was found to be an effective
way in monitoring the improvement of the
software development. During the development
stage, series of tests on functionality using the
predefined test cases played significantly in
capturing and fixing the issues based on the
observed severity and priority levels of the failed
test cases. The evaluation system which
includes the ISO 25010 evaluation instrument,
weighted mean, Likert scale and purposive
sampling technique proved to be appropriate in
assessing the performance of the software tool.

On the basis of the tests and evaluation
conducted on the software tool, the study is
found to be successfully developed in
accordance to the defined requirements of the
overall system functionality. Results from
accuracy and functionality tests proved that the
system performs in conformance to its
specifications. Further, the application was
evaluated to be excellent in terms of verbal
interpretation, with its overall weighted mean of

Figure 5. CPU Scheduling Algorith Comparative
Analysis

25 CvSU Research Journal

L. M. Arayata, MC. F. Francisco and MI. P. delos Trinos

4.83. This result denotes that the software tool
has attained its objectives and intended purpose
to provide a supplementary learning tool to aid
instructors teach operating system course
subject, and for the students to grasp the lessons
through a computerized learning management
system.

RECOMMENDATIONS

 The following recommendations are made to
further enhance the software tool:
(1) assessment and examination for users and
learners, in a network-based environment be
included; (2) the algorithm implementation for
multiprocessor be considered; (3) I/O burst on
CPU scheduling algorithms be included; and (4)
compatibility for dynamic memory partition size
and memory addressing in memory allocation be
included.

ACKNOWLEDGMENT

The success and completion of this research
project would not be possible without the
valuable help and support of numerous people.
Likewise, the authors would like to express
sincere indebtedness and gratitude to the
following for extending their help and the best of
their knowledge throughout the conduct of the
study:

Technological University of the Philippines –
College of Industrial Technology, for colluding to
pursue the conduct of this study;

Mr. Dionard Vale Cruz, Mr. Arjon C. Veluz, for
their valuable contributions for test proofing and
validating the accurateness of the computation
outputs of the research project. Their
participation in preparing and solving volume of
test cases helped the authors attain the
outstanding evaluation results;

Respondents and evaluators who tested and

evaluated the efficiency of the project;

Prof. Teresita R. Tolentino, for her selfless
contributions and valuable pieces of advice
during the conduct of the study;

Prof. King David J. Agreda, for sharing his
profound ideas about Operating System which
served as the base concept of the study;

Mr. Dionard Vale Cruz, Mr. Arjon C. Veluz and
Ms. Jocelyn Ramos, colleagues, for their
valuable contributions for test proofing and
validating the accurateness of the computation
outputs of the research project. Their
participation in preparing and solving volume of
test cases helped the authors attain the
outstanding evaluation results; and lastly

Deepest gratitude and appreciation is given to
God, for His showers and blessings of
knowledge, talents, and for making the authors
surrounded with the people who helped them
accomplish and finish this graduate study.

The Authors

REFERENCES

Commission on Higher Education. (2015). CHED

Memorandum Order (CMO) No. 25, Series
of 2015. Retrieved from Commision on
Higher Education.

Laskaris, J. (2014). E-Learning, A Future Tool for

Globalization. Retrieved from https://
www.talentlms.com/blog/where-do-i-start-
creating-first-e-learning-course/

Lowe, R.K (2003). Animation and Learning:

Selective Processing of Information in
Dynamic Graphics. Learning and
Instruction. Retrieved from https://
www.sciencedirect.com/science/article/pii/
S095947520200018X?via%3Dihub

26 January - June 2022

Development of Simulator for Operating System Processes

Macia, A. (2015). OS Sim (OS Concepts
Simulator). Retrieved from https://
sourceforge.net/projects/oscsimulator/

Mann, B.L. (2009). Computer-Aided Instruction.

doi:10.1002/9780470050118.ecse935.

McHoes, A.M. & Ballew, J. (2011). OS. McGraw

-Hill Education.

Naghibzadeh, M. (2011). Operating System:

Concepts and Techniques. iUniverse.

Pinoy Computer Engineer. (2017). CPU

Scheduling (Simulator Application).
Retrieved from https://play.google.com/
store/apps/details?
id=com.pinoycomputerengineer.cpuschedul
ing&hl=en

Tutorials Point. (2016). Operating System:

Funadamenal OS Concepts. Retrieved
from https://www.tutorialspoint.com/
operating_system/

Tversky, B., Morrison, J.B., & Betrancourt, M.

(2002). Animation: Can it Facilitate?
International Journal of Human-Computer
Studies, 57(4), 247-262. doi:https://
doi.org/10.1006/ijhc.2002.1017

